Commodity Traffic Cameras as Cost-Effective Alternative to Traditional Sensing Hardware

SOUTHWEST RESEARCH INSTITUTE® Advanced science. Applied technology.

Presenter Introduction

Dan Rossiter

- dan.rossiter@swri.org
- (210) 522-3541

Enabling ITS innovation since 2013

- From California to Florida and many states in between
- Traditional ATMS systems
- Computer vision systems
- High volume, high velocity cloud hosted data processing systems

- SwRI Background
- Recent Technological Advances
- Transportation Applicability
- Conclusion

SwRI Background

Applied Research from Deep Sea to Deep Space

INTELLIGENT SYSTEMS

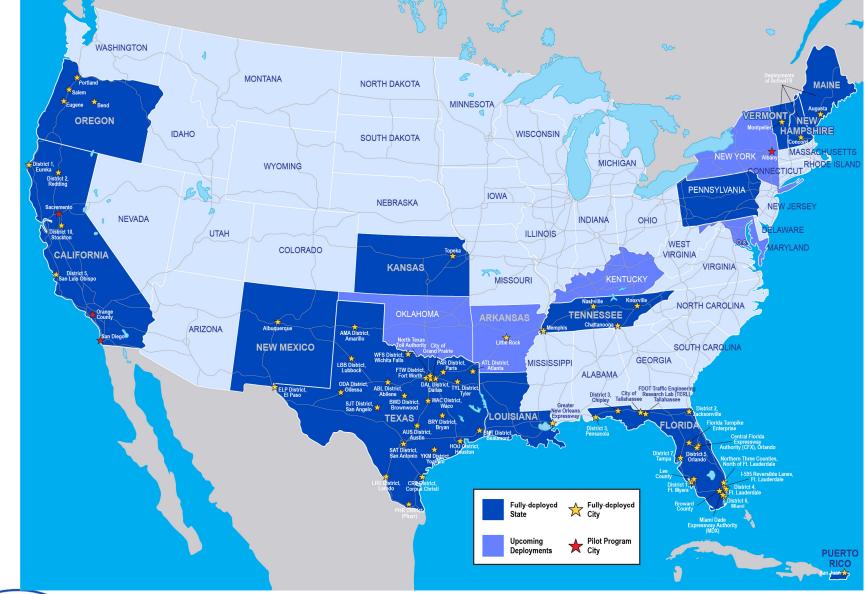
SwRI Overview

SwRI is a financially stable company with broad technological capabilities and has grown consistently every year since inception.

- Established in 1947
- Independent research organization
- 501(c)(3) nonprofit organization
- \$10M internal research funding to refine our technology offerings in FY20
- Dunn & Bradberry 5A-1 Credit Rating

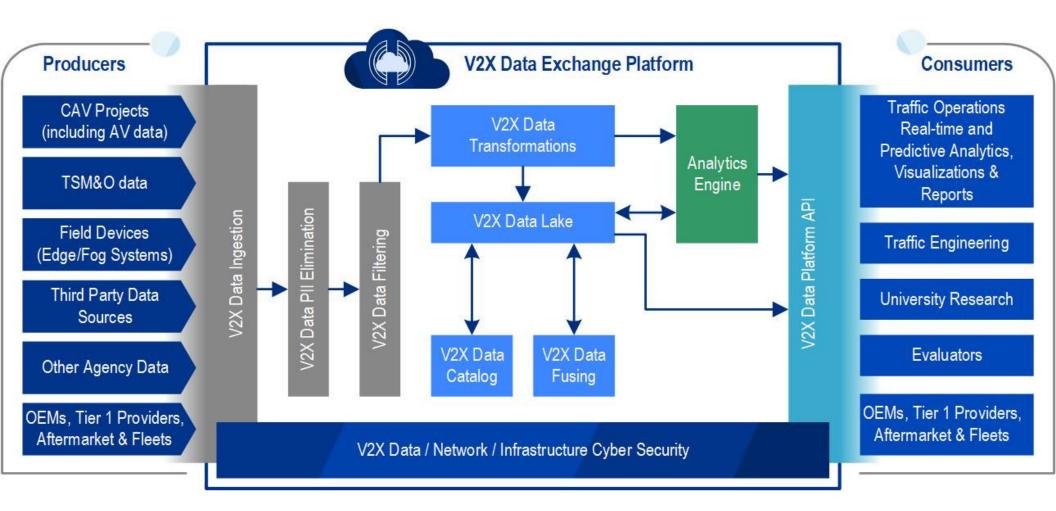
Broad ITS Expertise

SwRI's fleet of Autonomous Vehicles used to test Innovative Features and Technologies.


Over 70 ITS Staff with Expertise in the Following Areas:

- Advanced Traffic Management Systems
- Autonomous and Connected Vehicle Technologies
- High Volume/Velocity Data Fusion/Analysis

- Integrated Corridor Management Systems
- Transportation Cyber Security
- Traffic Camera Video Analysis

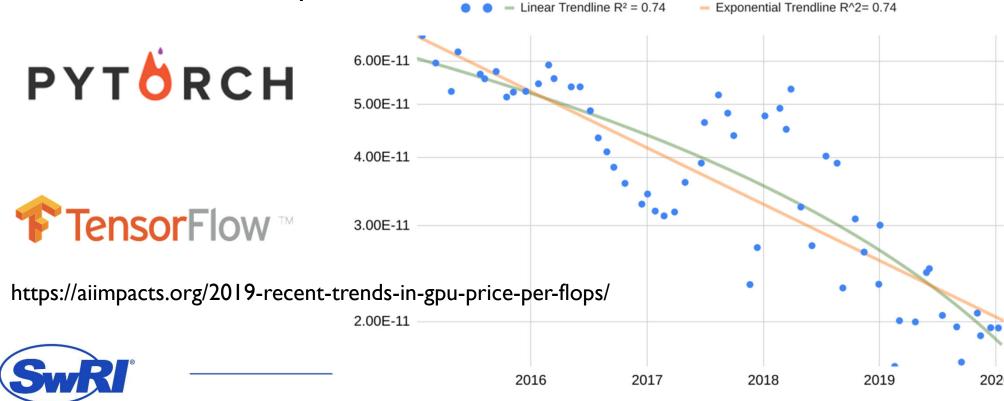


ActiveITS® Advanced Transportation Management System

ActiveDX C ITS Data Exchange Platform

INTELLIGENT SYSTEMS

Recent Technological Advances


In other words – Why now?

INTELLIGENT SYSTEMS

Advances Powering Computer Vision

- Cost per GPU operation capacity continues to drop significantly every year in recent history
- Machine learning frameworks have accelerated research in efficient computer vision algorithms
 - Google, Facebook, and others driving these trends through investment in open source

Cloud Providers Reducing Barriers to Entry

The AWS AI/ML stack

Broadest and most complete set of machine learning capabilities

	Business processes Amazon Personalize Amazon Forecast	Search Amazon Kendra	SPECIALIZE Code + DevOps Amazon CodeGuru Amazon DevOps Guru	Industrial Amazon Monitron Amazon Lookout for Equipment	Healthcare Amazon HealthLake Amazon Comprehend	
AI SERVICES	Amazon Fraud Detector Amazon Lookout for Metric	s	CORE	Amazon Lookout for Vision	Amazon Transcribe Me	2dical
	Text & Documents Amazon Translate Amazon Comprehend Amazon Textract	Chatbots Amazon Lex		Polly Transcribe Transcribe Call Analytics	Vision Amazon Rekognition AWS Panorama	
ML SERVICES	Label data No-code ML for business analysts	SAGEMAKER STUDIO LAB Learn ML Prepare Store data feature	re Detect Build with	MAZON SAGEMAKER Train Tune Deploy in models parameters production	Explain Manage predictions & monitor	Manage edge devices
ML FRAMEWORKS PyTorch, Apache Amazon EC2 CPUs GPUs A & INFRASTRUCTURE MXNet, TensorFlow		PUs GPUs AWS	S Inferentia AWS Trainium	Habana FPGA Gaudi	Elastic inference	
aws machine learning		© 2022, Amazon Web Service	es, Inc. or its affiliates. All rights reserved. Amazor	on Confidential and Trademark.		

swri.org

What is Possible?

In what ways can ITS benefit?

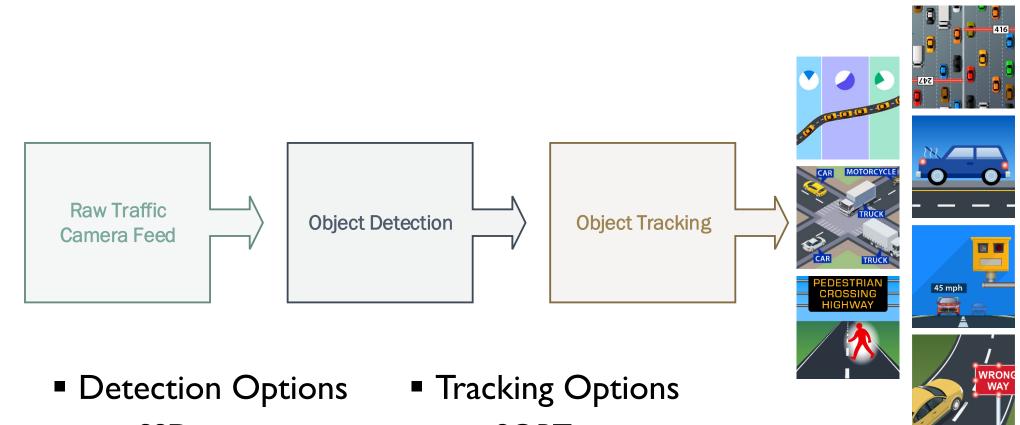
INTELLIGENT SYSTEMS

Detection Possibilities

Vehicle Detection/Tracking

Environmental Detection

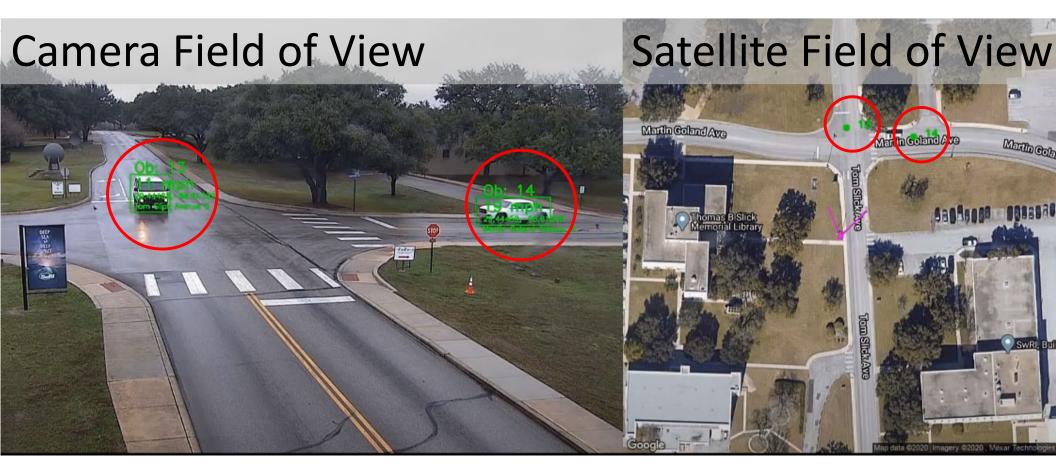
Pedestrian Detection/Tracking



Advanced Detection/Tracking

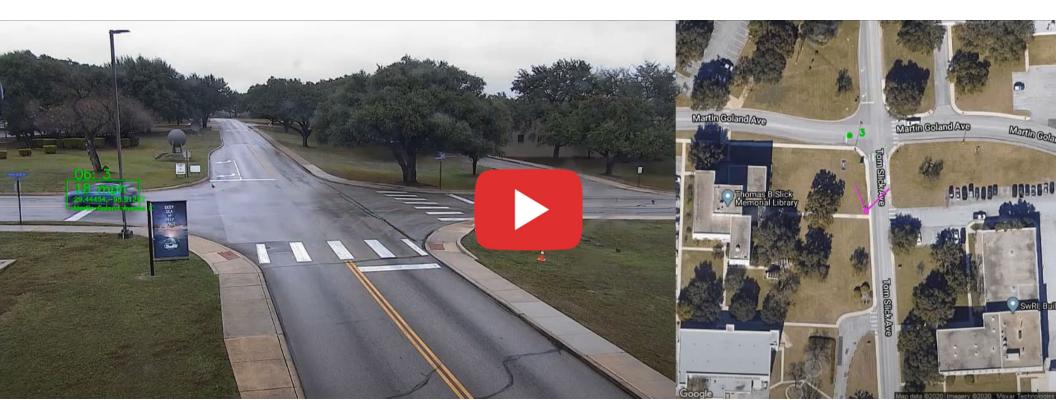
INTELLIGENT SYSTEMS

Detection/Tracking Implementation



- SSD
- EfficientDet
- YOLOv5

- SORT
- Deep SORT


Geolocation

- Road Geometry (Esri, Open Street Map, etc)
- Camera Latitude/Longitude
- Field of View
- Homography Keypoint Map

Geolocation Demonstration – Speed

INTELLIGENT SYSTEMS

Weather Detection – Data Curation

- Initial approach co-located RWIS stations + CCTVs
- When RWIS data quality was insufficient, custom tools and heuristics were used to try and narrow down where notable weather events might exist within broader dataset

Geography	Cameras	Snapshots	Weather Sensors	Sensor Readings
coastal south, plains	924	669,912	22	2,331,383
arid, desert, mountains, plains	155	5,755,019	6	207,746
central, coastal	3341	92,143,525	0	0
coastal north, hills, mountains, forest	39	712,492	52	6,656,522

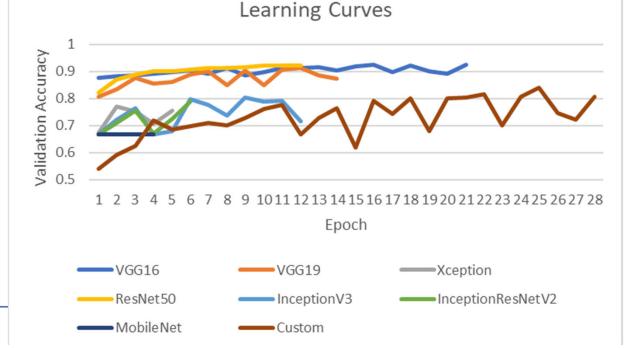
INTELLIGENT SYSTEMS

Weather Detection – Data Curation (cont)

INTELLIGENT SYSTEMS

Weather Detection – Data Curation (cont)

l Classifier		
STATISTICS	SEARCH	ESS DATA
Search Criteria: SearchType Start Date End Date District ~ 10/28/2018 12:00 AM 11/03/2018 State District Vermont ~ Vermont ~ SEARCH SAVE INTERVAL	12:00 AM	
20047 Results: 75932989 75932990 75932992 75932992 75932994 75932995 75932996 75933006 75933006 75933026 75933026 75933026 75933031 75933026 75933031 75933040 75933047 75933047 75933053 75933055 75933057 75933059 75933059 75933058 75933059 75933059 75933059 75933059 75933054 75933059 75933055 75933059 75933054 75933055 75933059 75933054 75933055 75933057 75933059 75933059 75933054 75933054 75933055 75933055 75933055 75933055 75933056 75933056 75933057 75933059 75933058 75933059 75933059 75933059 75933059 75933054 75933055 75933055 75933055 75933055 75933055 75933055 75933055 75933059		<image/>



INTELLIGENT SYSTEMS

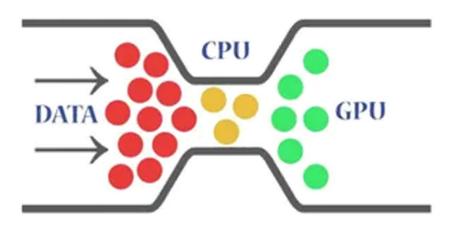
Weather Detection – Evaluating Base Model

- None of the base models considered were able to perform adequately
- Some layers/weights from pre-trained models were used in our final model
- Final accuracy was able to achieve >90% classifying validation dataset

Model	Size	Top-1 Accuracy	Trainable Parameters	Depth (Layers)
Xception	88 MB	79%	22,910,480	126
VGG16	528 MB	71.3%	138,357,544	23
VGG19	549 MB	71.3%	143,667,240	26
ResNET50	98 MB	74.9%	25,636,712	-
InceptionV3	92 MB	77.9%	23,851,784	159
InceptionResNETV2	215 MB	80.3%	55,873,736	572
MobileNet	16 MB	71.3%	4,253,864	88

Case Study: City of San Antonio

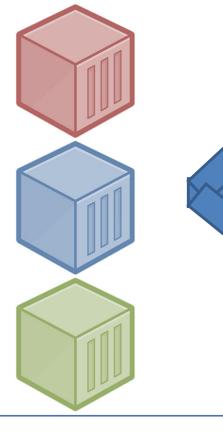
- Premise: Monitor 11 cameras along roadway, collecting vehicle metrics. Later phase, pedestrian metrics also considered.
- Rationale: Stretch of road was selected due to long history of major crashes and fatalities, plus an existing high density of traffic cameras along the stretch of road in questions.



Scaling to Multiple Cameras

- Object Detection
 - Batching
- Object Tracking
 Multiple Processes
- Geolocation
 - Multiple Processes
- Other
 - Multiple Docker Containers
 - Each Supports Batch of Camera Feeds

- GPU & CPU Bottlenecks
- Optimize Frames Per Second
 - Native 30fps
 - Necessary 5-10fps
- Eliminate Disk IO Dependencies



Scaling – Next Steps

- Extend batch processing beyond detection, tracking, and geolocation.
- Capabilities beyond above rely largely on serial CPU processing, forcing use of multiple docker containers to scale out number of

camera feeds.

Refining Homography Mapping

- Working with broader range of cameras, it became clear better tooling to build robust homography maps at scale was necessary.
- The number of keypoints used in building homography map had significant impact on ability to generalize across the entire field of view.

