Evaluation of Road Weather Messages on DMS Based on Roadside Pavement Sensors

SLIPPERY PAVEMENT USE CAUTION Western States Forum (June 2022)

Introduction

System Overview

Methodology

Data Analysis

Conclusion

Benefits

System displays messages on DMS based on pavement sensors.

System Devices:

- -2 DMS on either end of corridor
- -8 warning flashers 4 WB, 4 EB
- -8 friction sensors monitoring for ice, snow or rain
- -5 Doppler Radar Sensor

Trunk Highway (TH) 12 Slippery Pavement Notification System

System Overview Provided by MnDOT

System Operations:

If any friction sensor goes below defined threshold the DMS message will display along with flashers

Images provided by Minnesota DOT

Delano (EB) DMS

Image provided by Minnesota DOT

Maple Plain (WB) DMS

Image provided by Google Streetview

Data Metrics

- Speed Data
 - Mean speed
 - 85th Percentile
 - Speed variation
- Car following behavior
 - Headway
- Traffic flow
 - Vehicle count (summary)

Temporary Houston Radar

Did not use Probe Data for Final Analysis

Speed	Length	Lane	Direction	Start	Gap	UID	Range	DirectionStr
64	22	2	1	12/8/2020 21:57	0	1	0	Going Left
62	16	2	1	12/8/2020 21:57	0	2	0	Going Left
62	16	1	2	12/8/2020 21:57	0	3	0	Going Right
60	16	1	2	12/8/2020 21:57	883	4	0	Going Right
60	20	2	1	12/8/2020 21:58	4157	5	0	Going Left
55	15	-1	2	12/0/2020 21-50	4470	6	0	Coing Dight

Data Sources: Device Map

Camera Composite

Camera images were downloaded every 5 minutes

Tableau dashboard developed allowing researchers to scan all cameras for duration of storm

Would verify impact of weather event and flag events which would impact metrics (i.e crashes)

Road Weather Information System

(RWIS)

Winter Weather Events

Winter Weather Events Evaluated

Event	Event Start	Event End	Duration (minutes)	Duration (hours)
1	12/13/2020 12:51	12/13/2020 17:12	270	4.5
2	12/23/2020 11:57	12/28/2020 9:03	7026	117.1
3	12/28/2020 18:23	12/29/2020 0:43	380	6.3
4	12/29/2020 14:48	12/30/2020 5:24	876	14.6
5	12/30/2020 21:58	12/31/2020 2:32	274	4.6
6	12/31/2020 22:24	12/31/2020 23:37	73	1.2
7	1/5/2021 0:54	1/5/2021 9:15	501	8.4
8	1/14/2021 21:13	1/15/2021 5:39	506	8.4
9	1/19/2021 9:02	1/19/2021 13:38	276	4.6
10	1/23/2021 15:07	1/24/2021 9:26	1099	18.3
11	2/4/2021 4:54	2/4/2021 10:22	328	5.5
12	2/8/2021 0:13	2/8/2021 8:28	495	8.25
13	2/9/2021 4:18	2/9/2021 8:54	276	4.6
14	2/11/2021 19:52	2/12/2021 11:25	933	15.6
15	2/17/2021 8:24	2/18/2021 8:14	1430	23.8
16	2/28/2021 6:03	2/28/2021 9:37	214	3.6

Winter Weather from DMS

Identifying Winter Weather Events

Timestamp	Description	Deviceid	Message	Owner	Duration (min)
1/19/2021 9:02	Sign DEPLOYED	V12E00		OTHER SYSTEM	13
1/19/2021 9:15	Sign CLEARED	V12E00	None	FIELD BLANK	2
1/19/2021 9:17	Sign DEPLOYED	V12E00		OTHER SYSTEM	261

Confirmed by weather data and camera imagery

Winter Weather Control Events

- The same time period as winter event one week before/after
- Removed control if impacted by weather (based on DMS or camera imagery)
- Select additional controls two weeks before/after as needed
- 13 of 14 events had at least two control periods

Event	Control Start	Control End	Duration (minutes)	Туре
1	12/20/2020 12:51	12/20/2020 17:12	270	Control
2	12/9/2020 11:57	12/9/2020 23:57	720	Control
2	12/16/2020 11:57	12/21/2020 9:03	7026	Control
3	12/14/2020 18:23	12/15/2020 0:43	380	Control
3	12/21/2020 18:23	12/22/2020 0:43	380	Control
4	12/15/2020 14:48	12/16/2020 5:24	876	Control
4	12/22/2020 14:48	12/23/2020 5:24	876	Control
5	12/16/2020 21:58	12/17/2020 2:32	274	Control

Analysis Approach

Average Speed Distribution

Average Speed Distribution

Statistical Analysis Changes

Data Analysis

- Individual Winter Weather Events (based on duration and amount of snow accumulation)
 - Minimal Winter Impact (Event 3)
 - Typical Winter Impact (Event 9)
 - Significant Winter Impact (Event 11)
- Summary of All Individual Winter Weather Events
- Analysis of All Winter Weather Events
 Combined
- Discussion of Results

380 Minute Duration

Atmospheric Conditions

Precipitation Presence

One Hour Precipitation Accumulation

	Eastbound		Westbound		
	Study	Control	Study	Control	
Downstream Total Volume	449	523/368*	868	1017/829*	
Mean Speed Difference (mph)	-1.57	3.44	-3.08	-1.35	
Speed Difference Standard Deviation (mph)	5.39	4.64	3.22	3.19	
Mean Speed Difference Shift (mph)		-5.01		-1.73	
Mean Speed Difference Significance		Significant		Significant	
Mean 85th Percentile Difference (mph)	-2.99	0.95	-2.85	-1.78	
Mean 85th Percentile Difference Shift (mph)	-3.94		-1.07		
Mean 85th Percentile Difference Significance	Significant		Significant		
Mean Standard Deviation Difference (mph)	-2.56	-2.77	0.24	-0.08	
Mean Standard Deviation Difference Shift (mph)	0.21		0.32		
Mean Standard Deviation Difference Significance)	Not significant		Not significant		
Mean Gap Difference (seconds)	-0.01	-0.57	0.26	0.03	
Mean Gap Difference Shift (seconds)	0.56		0.23		
Mean Gap Difference Significance	Not s	significant	Not s	Not significant	

^{*}Total Volume for both control time periods

Eastbound
Average Speed

Westbound 85th Percentile Speed

276 Minute Duration

Present for ~30 minutes

	Eastbound		Westbound		
	Study	Control	Study	Control	
Downstream Total Volume	180	271/258*	174	302/289*	
Mean Speed Difference (mph)	-2.38	0.30	-0.69	-2.62	
Speed Difference Standard Deviation (mph)	3.51	1.98	3.26	2.06	
Mean Speed Difference Shift (mph)	-2	2.68	1	.94	
Mean Speed Difference Significance		Significant		Significant	
Mean 85th Percentile Difference (mph)	-2.62	0.06	-1.24	-3.48	
Mean 85th Percentile Difference Shift (mph)	-2.68 2.24		.24		
Mean 85th Percentile Difference Significance		Significant		Significant	
Mean Standard Deviation Difference (mph)	-1.10	-0.77	-0.65	-0.21	
Mean Standard Deviation Difference Shift (mph)	-0.33 -0.44).44		
Mean Standard Deviation Difference Significance)	Not significant		Not significant		
Mean Gap Difference (seconds)	-0.10	-0.21	0.23	0.35	
Mean Gap Difference Shift (seconds)	0.11		-0.12		
Mean Gap Difference Significance	Not si	gnificant	Not si	gnificant	

^{*}Total Volume for both control time periods

Eastbound
Average Speed

Westbound
Average Speed

Event 11 (major event)

328 Minute Duration

Event 11 (major event)

	Eastbound		Westbound		
	Study	Control	Study	Control	
Downstream Total Volume	320	743/692*	77	162/187*	
Mean Speed Difference (mph)	0.76	0.95	1.33	-2.01	
Speed Difference Standard Deviation (mph)	4.12	2.02	5.75	2.74	
Mean Speed Difference Shift (mph)	-().19	3	3.35	
Mean Speed Difference Significance		Not significant		Significant	
Mean 85th Percentile Difference (mph)	0.93	0.39	0.87	-2.56	
Mean 85th Percentile Difference Shift (mph)	0.55 3.43		3.43		
Mean 85th Percentile Difference Significance	Not significant		Significant		
Mean Standard Deviation Difference (mph)	-0.02	-0.87	0.38	-0.44	
Mean Standard Deviation Difference Shift (mph)	0.85		0.82		
Mean Standard Deviation Difference Significance)	Significant		Significant		
Mean Gap Difference (seconds)	0.28	-0.23	-0.05	0.38	
Mean Gap Difference Shift (seconds)	0	0.51		-0.43	
Mean Gap Difference Significance	Sign	ificant	Sigr	nificant	

^{*}Total Volume for both control time periods

Event 11 (major event)

Event 11 (major event)

Mean Speed

85th Percentile Speed

Significant - Desirable

Not Significant

Significant - Not Desirable

Standard Deviation

Vehicle Gap

Summary of All Events Combined

	East	bound	West	bound	
	Study	Control	Study	Control	
Mean Speed Difference (mph)	-1.50	1.28	-0.57	-2.02	
Speed Difference Standard Deviation (mph)	5.97	3.79	6.04	3.65	
Mean Speed Difference Shift (mph)	-2	2.78	1.45		
Mean Speed Difference Significance	Sign	ificant	Significant		
Mean 85th Percentile Difference (mph)	-2.01	0.62	-0.52	2.71	
Mean 85th Percentile Difference Shift (mph)	-2.63		2.19		
Mean 85th Percentile Difference Significance	Sign	ificant	Significant		
Mean Standard Deviation Difference (mph)	-1.02	-1.15	0.17	-0.43	
Mean Standard Deviation Difference Shift (mph)	0	.13	0	.60	
Mean Standard Deviation Difference Significance)	Not significant		Significant		
Mean Gap Difference (seconds)	-0.12	-0.26	0.14	0.20	
Mean Gap Difference Shift (seconds)	0	.14	-0.07		
Mean Gap Difference Significance	Sign	ificant	Not significant		

Summary of All Events Combined

Eastbound Mean Speed

Westbound Mean Speed

Results Discussion

- Eastbound Direction show potential positive influence
 - Results aligned with expectations on impacting driver behavior
 - Represented best study layout (DMS and Sensor)
- Westbound Direction less uniform and negative influence
 - Possible explanation for irregular results
 - Placement of DMS
 - External influences (intersection, maintenance districts)

Maintenance Boundaries

Traffic Volumes

	East	bound	Westbound					
Event	Upstream	Downstream	Volume Change	Upstream	Downstream	Volume Change		
1	1,370	1,283	-87	1,693	1,383	-310		
2	18,638	18,745	107	22,758	20,246	-2512		
3	514	449	-65	1,075	868	-207		
4	1,598	1,401	-197	3,190	2,871	-319		
5	110	138	28	262	221	-41		
7	2,502	2,751	249	1,164	892	-272		
8	713	327	-386	302	342	40		
9	1,147	1,197	50	1,384	1,103	-281		
10	1,665	1,739	74	2,500	2,045	-455		
11	2,336	2,586	250	1,233	947	-286		
12	2,235	2,336	101	780	651	-129		
13	2,346	2,478	132	890	685	-205		
14	3,337	3,445	108	2,486	1,956	-530		
16	333	339	6	412 363		-49		

Eastbound – Majority less than 10% change; two event >15%

Westbound – Majority 10-20% change

Eastbound

Mean Speed

Westbound

Mean Speed

Drivers may be more likely to comply with DMS when they cannot perceive poor surface conditions

Westbound 85th Speed

Eastbound Standard Deviation

Westbound Standard Deviation

Westbound Gap

Eastbound Direction

- Speed Data 12 of 14 events had a significant decrease
 - Average decrease of 3.5 mph
 - Combined results = 2.8 mph decrease
- 85th Percentile Speed 13 of 14 events had significant decrease
 - Average decrease of 2.9 mph
 - Combined results = 2.6 mph decrease
- Standard Deviation 2 event with decrease, 6 events with increase
- Vehicle Gap 2 events with significant increase

Westbound Direction

- Speed Data 3 events with decrease, 7 events with increase
 - Average increase of 2.5 mph
 - Combined results = 1.5 mph increase
- 85th Percentile Speed 1 event with decrease, 8 events with increase
 - Average increase of 2.5 mph
 - Combined results = 2.2 mph increase
- Standard Deviation 7 events with increase
- Vehicle Gap 1 event with increase, 1 event with decrease

Potential External Factors

- Placement of DMS in Urban Environment
- Multiple Intersections between DMS and Sensor
- Maintenance Boundaries
- Other factors not accounted for

Potential External Factors

Limited results

- Winter weather severity
 - Severe events showed no statistically significant changes
 - No accumulation/precipitation showed statistically significant decreases in both directions
 - No accumulation with precipitation had six events with statistically significant decrease, one event not significant and one event significant increase WB

Overall

- EB results indicate DMS winter weather messaging has positive effect by decreasing mean and 85th percentile speed
- Indications of positive effect on gap in combined results in EB
- WB direction showed mixed results for mean and 85th percentile
- External factors in WB direction may contribute to inconclusive findings

Benefits

- Reduction in speeds should improve safety and mobility
- Lower speeds allow for time to make safe driving decisions
- Reduced conflicts leads to lower damage costs and economic impact
- Safety benefits of DMS depend on driver compliance

Potential Implementation Steps

Sensor Health Monitoring

- Provide regular health checks of sensors
- Install redundant sensors similar to Highway 12

Potential Implementation Steps

Driver Compliance Correlation with Event Severity

- Future study to develop models understanding various elements impacting results
- Could validate anecdotal findings from report
- Potentially show greater impacts of system for minor events

Potential Implementation Steps

External Impact and Placement of DMS

- Future study on placement of DMS in relation to desired influence area
- Potential to understand influence area of DMS and effects of external factors

Evaluation of Road Weather Messages on DMS Based on Roadside Pavement Sensors

Skylar Knickerbocker

STRUCTURAL STEEL POSTS FOR TYPE A SIGN S-A														
① DMS NO		PANE	L				POST	TST		FOOTING PILE DATA			TOTAL	
	LOCATION	SIZE	AREA	SIZE	QTY	LEN L1	L2	WEIGHT	BASE & STIFFENER PLATE	С	d	"P"	WEIGHT	WEIGHT STRUCTURAL STEEL
		INCH	SQ FT				1		FE	ET	LBS	POUND	INCH	INCH
DMS-1	RP 140+00.560 TH12 EB	220.8 x 82		W 8 x 31	2	13.9	13.9	862.00	283.00	57.5	105.8	14	868.00	2013
DMS-2	RP 146+00.10 TH12 WB	220.8 x 82		W 8 × 31	2	14.1	13.7	862.00	283.00	57.5	105.8	14	868.00	2013

TOTAL 4026 POUNDS

POSTS/PILE FOOTING
(L, IS POST NEAREST ROADWAY)

SPECIFIC NOTE:

(1) DMS TO BE PROVIDED BY MNDOT.

GENERAL NOTES:

- DRIVING POST SHALL BE THE SAME SIZE AS THE SIGN POST AND IS TO BE DRIVEN TO A 12 TO 14 TON BEARING CAPACITY.
- 2. POST LENGTHS ARE APPROXIMATE.
- 3. X IS THE DISTANCE FROM THE EDGE OF THE THRU LANE TO THE FIRST POST.
- 4. H IS THE HEIGHT ABOVE THE PAVEMENT EDGE TO THE BOTTOM EDGE OF THE PANEL.
- 5. P IS THE LENGTH OF DRIVING POST.
- 6. SEE INDIVIDUAL DMS SITE LOCATION PLAN SHEETS FOR CROSS SECTIONS.
- 7. WELDING SHALL ONLY BE ALLOWED ABOVE THE BOTTOM OF THE DMS.

