Using Wireless Data Collection Units as Point Detection Systems

Western States Rural Transportation Technology Implementers Forum
June, 2012

Amirali Saeedi, SeJoon Park, David S. Kim, J. David Porter
School of Mechanical, Industrial and Manufacturing Engineering
Acknowledgements

- ODOT Research/OTREC
- ODOT ITS
- Technical Advisory Committee
Outline

- Objectives
- Approach
- Overview of RSSI
- Tests and results
- Potential applications
- Discussion and Q & A
Objectives

• Utilize wireless data collection units to accurately identify when equipped vehicles just pass specific points on a road or highway
 • Original motivation was accurate travel time data collection on signalized arterials utilizing Bluetooth-based data collection units
Antenna Coverage

- Example of antenna coverage pattern
Approach

- Utilize *Received Signal Strength Indicator* (RSSI) data
 - Larger RSSI value \Rightarrow Vehicle closer to the DCU
Overview of RSSI

- **Received Signal Strength Indicator (RSSI)**
 - Value of the strength of a received radio frequency (RF) signal
 - Typically measured in units of decibels milliwatts (dBm)
 - 100 milliwatts → 20 dBm
 - 1000 milliwatts (1 watt) → 30 dBm

- **Advantages**
 - No additional hardware is needed to collect RSSI information in small wireless devices

- **Disadvantages**
 - Sensitive to variability in the transmitter, receiver and antenna orientation
Overview of RSSI (cont.)

- **RSSI**
 - The basic circuit is designed to pick RF signals and generate an output equivalent to the signal strength
 - The ability of the receiver to pick the weakest of signals is referred to as receiver sensitivity
 - The higher the receiver sensitivity, the better

 - There are circuits which measure the signal strength based on the output voltage
 - If the signal strength is good, the output voltage is higher and the output voltage is poor if the signal strength is low
Overview of RSSI (cont.)

- Value of the strength of a received radio frequency (RF) signal
 - A theoretical RSSI can be calculated using known signal propagation models

\[
P_r = P_t \left(\frac{\lambda}{4\pi d} \right)^n \quad \Rightarrow \quad PL_{dB} = 20 \log \left(\frac{4\pi}{\lambda} \right) + 10n \log(d)
\]

- Where

- \(P_r \) = Power received (Watts)
- \(P_t \) = Power transmitted (Watts)
- \(n \) = Path loss exponent
- \(\lambda \) = Wavelength of the signal (meters)
- \(d \) = Distance between transmitter and receiver (meters)
- \(PL_{dB} \) = Power loss in decibels
Overview of RSSI (cont.)

- RSSI vs. Distance for different values of n
Testing Conducted With Bluetooth DCUs

- Outdoor testing conducted using two known BT devices within a vehicle
 - Local two-lane rural road in Corvallis – Three speeds tested
 - Wallace Road (four lanes) in Salem – One speed (45 MPH) tested
 - Highway 99W in Tigard – DCUs installed at five signalized intersections
 - Reser stadium parking lot – using two DCUs with overlapping coverage
Response: Difference between actual and estimated time when vehicle just crosses A-X
Camp Adair Road, Corvallis Tests

• Antenna Height: 70”
• Distance between antenna’s location and the road: 437”
• Width of road: 270”
• Tested Speeds: 25, 35, and 45 mph
• Experiment Design: 30 observations per each travel speed
Camp Adair Road, Corvallis Tests

- Test vehicle and DCU setup
Camp Adair Road, Corvallis Tests

• Camp Adair Road
Camp Adair Road, Corvallis Tests

- Results

Histogram - Time Difference Between Highest RSSI Record and DCU (Camp Adair Road)
Camp Adair Road, Corvallis Tests

• Results

Highest RSSI - Manual Time Stamp
(Seconds)
Camp Adair Road 45 mph
Wallace Road, Salem Tests

• Location of test site

![Map showing the location of test site](image-url)
Wallace Road, Salem Tests

- Antenna height and DCU setup

Approximate Installation Height for Reader Unit and Antenna
Wallace Road, Salem Tests

- Results

![Histogram of Highest RSSI - Manual Time Stamp (Seconds) for Wallace Road - 40 Trials]
Highway 99W Tests

- Test setup diagram and pictures
Highway 99W Tests

• Results

Histogram - Time Difference Between Highest RSSI Record and DCU
(Highway 99W - Tigard, OR)
Max = 43 secs.
Highway 99W Tests

- Highest RSSI reading – Case 1

Vehicle with BT device - stationary

DCU
Highway 99W Tests

- Highest RSSI reading – Case 2

[Diagram of a vehicle with a BT device moving and a DCU marker]
Highway 99W Tests

RSSI vs. MAC Address Record
Vehicle Stopped Close to Intersection

-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MAC Address Record

Cell 1
Cell 2
Highway 99W Tests

• Results

Histogram - Time Difference Between Highest RSSI Rate of Change Record and DCU (Highway 99W - Tigard, OR)
Max = 21 secs
Reser Stadium Tests

- Two DCUs
 - One DCU at a “signal”
 - One DCU 100 feet from the signal
- 120 vehicle passes
 - 60 West
 - 60 East
 - In some passes, the vehicle stopped at the “intersection”.
Reser Stadium Tests

- Antenna setup 1
Reser Stadium Tests

- Antenna setup 2
Reser Stadium Tests

- Pictures
Reser Stadium Tests

- Intersection
 - Includes stops and through passes
Reser Stadium Tests

- Before Intersection

Histogram - Time Difference Between Highest RSSI Rate of Change Record and DCU

Histogram - Time Difference Between Highest RSSI and DCU
On-Going Research

- Better methods for identifying when the vehicle passes the DCU
 - Better results have been obtained

- Testing the use of two DCUs to more accurately (in distance) identifying when the vehicle passes the DCU
 - Adjacent
 - On opposite sides of the road
Distance Differences (feet)

<table>
<thead>
<tr>
<th>Vehicle Speed (MPH)</th>
<th>Vehicle Speed Feet Per Second</th>
<th>Passing the DCU time difference - actual vs. detected (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.47</td>
<td>2.93</td>
</tr>
<tr>
<td>2</td>
<td>2.93</td>
<td>5.87</td>
</tr>
<tr>
<td>3</td>
<td>4.40</td>
<td>8.80</td>
</tr>
<tr>
<td>4</td>
<td>5.87</td>
<td>11.73</td>
</tr>
<tr>
<td>5</td>
<td>7.33</td>
<td>14.67</td>
</tr>
<tr>
<td>6</td>
<td>8.80</td>
<td>17.60</td>
</tr>
<tr>
<td>7</td>
<td>10.27</td>
<td>20.53</td>
</tr>
<tr>
<td>8</td>
<td>11.73</td>
<td>23.47</td>
</tr>
<tr>
<td>9</td>
<td>13.20</td>
<td>26.40</td>
</tr>
<tr>
<td>10</td>
<td>14.67</td>
<td>29.33</td>
</tr>
<tr>
<td>11</td>
<td>16.13</td>
<td>32.27</td>
</tr>
<tr>
<td>12</td>
<td>17.60</td>
<td>35.20</td>
</tr>
<tr>
<td>13</td>
<td>19.07</td>
<td>38.13</td>
</tr>
<tr>
<td>14</td>
<td>20.53</td>
<td>41.07</td>
</tr>
<tr>
<td>15</td>
<td>22.00</td>
<td>44.00</td>
</tr>
<tr>
<td>16</td>
<td>23.47</td>
<td>46.93</td>
</tr>
<tr>
<td>17</td>
<td>24.93</td>
<td>49.87</td>
</tr>
<tr>
<td>18</td>
<td>26.40</td>
<td>52.80</td>
</tr>
<tr>
<td>19</td>
<td>27.87</td>
<td>55.73</td>
</tr>
<tr>
<td>20</td>
<td>29.33</td>
<td>58.67</td>
</tr>
<tr>
<td>21</td>
<td>30.80</td>
<td>61.60</td>
</tr>
<tr>
<td>22</td>
<td>32.27</td>
<td>64.53</td>
</tr>
<tr>
<td>23</td>
<td>33.73</td>
<td>67.47</td>
</tr>
<tr>
<td>24</td>
<td>35.20</td>
<td>70.40</td>
</tr>
<tr>
<td>25</td>
<td>36.67</td>
<td>73.33</td>
</tr>
<tr>
<td>26</td>
<td>38.13</td>
<td>76.27</td>
</tr>
<tr>
<td>27</td>
<td>39.60</td>
<td>79.20</td>
</tr>
<tr>
<td>28</td>
<td>41.07</td>
<td>82.13</td>
</tr>
<tr>
<td>29</td>
<td>42.53</td>
<td>85.07</td>
</tr>
<tr>
<td>30</td>
<td>44.00</td>
<td>88.00</td>
</tr>
<tr>
<td>31</td>
<td>45.47</td>
<td>90.93</td>
</tr>
<tr>
<td>32</td>
<td>46.93</td>
<td>93.87</td>
</tr>
<tr>
<td>33</td>
<td>48.40</td>
<td>96.80</td>
</tr>
<tr>
<td>34</td>
<td>49.87</td>
<td>99.73</td>
</tr>
<tr>
<td>35</td>
<td>51.33</td>
<td>102.67</td>
</tr>
<tr>
<td>36</td>
<td>52.80</td>
<td>105.60</td>
</tr>
<tr>
<td>37</td>
<td>54.27</td>
<td>108.53</td>
</tr>
<tr>
<td>38</td>
<td>55.73</td>
<td>111.47</td>
</tr>
<tr>
<td>39</td>
<td>57.20</td>
<td>114.40</td>
</tr>
<tr>
<td>40</td>
<td>58.67</td>
<td>117.33</td>
</tr>
</tbody>
</table>
Applications

- Intersection performance data collection
 - Average control delay
 - Average total time at intersection

- Work zone data collection
 - Average time in work zone

- Acceleration/deceleration data
 - Need to evaluate accuracy obtainable
DISCUSSION & QUESTIONS